
1

TorusVis
ND

: Unraveling High-Dimensional Torus

Networks for Network Traffic Visualizations
Shenghui Cheng

1
, Pradipta De

1
, Shaofeng H.-C. Jiang

2
, and Klaus Mueller

1

1
Computer Science Department, Stony Brook University and SUNY Korea

2
Computer Science Department, The University of Hong Kong

Abstract— Torus networks are widely used in supercomputing.

However, due to their complex topology and their large number

of nodes, it is difficult for analysts to perceive the messages flow

in these networks. We propose a visualization framework called

TorusVisND that uses modern information visualization

techniques to allow analysts to see the network and its

communication patterns in a single display and control the

amount of information shown via filtering in the temporal and

the topology domains. For this purpose we provide three

cooperating visual interfaces. The main interface is the network

display. It uses two alternate graph numbering schemes – a

sequential curve and a Hilbert curve – to unravel the 5D torus

network into a single string of nodes. We then arrange these

nodes onto a circle and add the communication links as line

bundles in the circle interior. A node selector based on parallel

coordinates and a time slicer based on ThemeRiver help users

focus on certain processor groups and time slices in the network

display. We demonstrate our approach via a small use case.

Keywords—Torus network; visualization; topology

I. INTRODUCTION

High performance computing has become an indispensable
tool for the simulation of phenomena infeasible to enact in real
physical experiments, ranging from climate to nuclear to

astrophysics and even economics. The size and complexity of
these problems has been steadily increasing, and so has the size
and complexity of the computational hardware.
Supercomputers can now have tens and even hundreds of
thousands of highly interconnected compute nodes and this
trend has no end in sight. Given these complex and massive
network topologies, recognizing and trouble-shooting
irregularities in inter-processor communications and data
traffic can be exceedingly challenging. One of the most basic
such challenges is how to overview and browse all nodes and
their interconnections in an effective way. While this is simple
for a 2D or even 3D mesh configuration, it becomes quite
involved with a 3D torus network, and is currently unthinkable
for the new state-of-the-art 5D torus networks, such as the IBM
Blue Gene/Q. In this paper, we present a fledgling framework
that is designed to fulfill these imperative needs.

A torus network is a type of interconnect network in which
nodes can connect to their neighbor nodes in form of a mesh.
The last node in each dimension can connect to the first node
as well. In this case, the torus network becomes symmetric.
The torus network has high dimensionality – 3D, 5D or even
6D – and a topology which is difficult for users to understand.
Moreover, because of the high dimensionality, it usually
consists of a large number of nodes and the complex

Figure 1: Our visualization framework TorusVisND and its three components: (a) network display (b) node selector and (c) time slicer. The network display

currently shows the traffic across the nodes chosen in the node selector when time=25 as selected in the time slicer. The time slicer shows the message flow across

the nodes chosen in the red rectangle.

(a)

(b)

(c)

2

communication patterns among the nodes can easily lead to
confusion. To allow users to better understand the torus
network for the purpose of real-time monitoring, timing
analysis, or debugging, an effective visual interface can be of
great help.

For this visual interface, our principle design goal was to
provide a single 2D view onto the network (as opposed to a
small multiples visualization composed of many projections)
and allow users to manage the visualization of the possibly
massive number of nodes, links, and time slices via a set of
complementary interactive widgets. In network traffic analysis
the proximity of nodes is a major determinant of the emerging
patterns in processor inter-communication. Hence we seek a
2D mapping that can (1) emphasize local node neighborhoods
connected in the high-dimensional torus topology, and (2)
provide sufficient room to visualize the node interconnections.

A 2D space embedding via techniques like
Multidimensional Scaling (MDS) [14] fulfills the first goal but
leaves the display too crowded to meet the second goal. A
better solution is to create a 1D embedding of the network and
draw the links into the second dimension. Further, for
understandability of the embedding it is desirable to devise a
systematic traversal of the node space. Non-linear MDS is an
optimization technique which makes heavy use of
randomization and will not fulfill this goal. A sequential scan-
line ordering along hyper-rows leads to a systematic ordering
but has severe discontinuities at the end of the hyper-rows.
These discontinuities could be prevented by incrementing the
node indices in appropriate ways, but essentially such a scheme
results in the first stage of the recursive fractal-like pattern
generated by a space-filling curve, such as Hilbert or Peano.

Our paper studies the use of linear embedding techniques
as a way to visualize high-dimensional torus networks.
Specifically we consider sequential and space filling curves.
Our complete design augments these 1D embeddings with the
node-connective links and provides various interaction widgets
to select interesting node neighborhoods, communication paths,
and time slices. We describe the details of our system in
Sections 3, and 4 after presenting some related work in Section
2. Conclusions and future work end the paper in Section 5.

II. RELATED WORK

A recent STAR report [13] provides a general survey of the
techniques proposed to visualize various aspects associated
with high performance computing systems, such as profiles,
traces, call graphs, I/O, software, memory, and others. Our
technique makes use of a radial organization of the linear node
embedding. Radial layouts have been used before in
performance visualization, but to the best of our knowledge not
for the visualization of the torus network itself. Choudhury and
Rosen [2] use a radial layout for the display of memory
hierarchies, where the outer ring represented the main memory,
and inner arcs coded various levels of cache with the processor
at the center. Cornelissen et al. [4] use radial layouts to
visualize serial traces. They organize the methods on the outer
circle and connected them with edges cutting across the inner
area. Similar to our framework, they also make use of edge
bundling [9] to prevent clutter in the interior region. A general
overview on radial layouts is provided by Draper et al. [5].

Closest to our mission – network traffic visualization – is
the work by Landge et al. [12] which uses the Boxfish system
[11] to visualize a 3D torus network by a set of occlusion-free
2D projections. These projections are easy to read once the
concept of the visual encoding is understood, but the
underlying projection method does not scale well to torus
networks of higher dimensionality, such as the 5D torus
network our technique can visualize. Likewise, the torus
visualization method described by Bjørnstad [1] is also limited
to the 3D graph projection.

A torus network is a high-dimensional structure. There are

numerous visualization methods to deal with high-dimensional

data. In parallel coordinates [10] the attributes define the

vertical axes while the samples form patterns of polylines.

Likewise, in Radviz [8] and in the Generalized Barycentric

Coordinate plot [15] the attributes constitute the vertices of a

regular sided polygon and the samples form patterns in its

interior. In all of these modalities the axes or vertices,

respectively, are placed in regular and predefined ways and do

not create diagnostic patterns on their own. A biplot [6] or a

dynamic scatterplot [17], on the other hand, is more

descriptive since the attribute axes projecting into the sample

distribution’s PCA basis do provide some insight about their

similarity in terms of the data distribution. We have already

mentioned general low-dimensional space embedding

techniques, such as MDS [14], linear discriminant analysis

(LDA) used by Choo et al. [3], and others. These types of

visualization methods, however, lose the topology information,

that is, one can no longer see which points are direct

connective neighbors and which ones are not. Conversely, our

framework maps the nodes onto a line first, and then folds

them into a circle to facilitate the torus connectivity.

III. OVERVIEW

Our TorusVis
ND

 framework consists of three linked
components: the network display, the node selector and the
time slicer. These three components are shown in Figure 1.

The network display (Figure 1a) shows the network’s
topology by arranging all processor nodes onto a circle in an
order determined by the linear embedding strategy (sequential
or space-filling curve). The links between the nodes are
visualized as edge bundles to prevent clutter. The figure here
only shows the processor links active in a certain time slice.

The node selector (Figure 1b) is a parallel coordinate
display with each axis mapped to a torus network dimension
(here 5). It allows users to select and filter certain processor
address ranges for display in the other two interfaces, or to
visualize the active processors as polylines.

The time slicer (Figure 1c) is a standard ThemeRiver
display where each stream is mapped to one processor (as
selected with the node selector). It can show any node property
over time – we currently display the number of messages sent
and/or received by each processor within a certain time
interval. Selecting a certain time slice updates the link
visualization in the network display correspondingly.

3

Figure 2: The weight function used to compute the locality metric.

IV. THE NETWORK DISPLAY

The network display is the core component of our framework.
In the following we first present some relevant theory and then
describe our implementation.

A. Nodes and Channels

A network typically consists of nodes and channels. The
topology of such a network can be described by an undirected
graph. G = (V, E) in which the vertices V are the nodes of the
network and the edges E are the links or channels. The torus
network is a type of network, but it has specific conditions for
V and E. In the definitions given below we follow the
descriptions of Nesson et al. [18].

Nodes: Suppose the n-dimensional torus network consists
of nodes in each dimension, where , 1 . In
total, there are then ∏

 nodes. Each node in the torus

has unique coordinates – the node offset (), where
0 , 1 . The offsets of all nodes can be
expressed in the node coordinate matrix C:

 [

]

In a practical application, one typically chooses
 where p is an integer. In this paper we only deal
with these cases. Our test example is the 5-D torus network
with 4 nodes in each dimension, yielding 1,024 nodes in total.

Channels: In dimension , , the connectivity for
node is

 {
(())

(())

We can find a node and its neighbors by means of connectivity.
Each node has 2 neighbor nodes in each dimension and 2n
neighbor nodes in total. In other words, the degree of a node in
the n-dimensional torus is 2n. Since the last node can connect
to the first node when they are in the same dimension, it is easy
to define the distance between two nodes. Let Dist(*) be the
distance between node X and node Y
 in the torus network, then:

 ∑ | | | |

 .

B. Torus Network Linearization via Node Ordering

High-dimensional spaces are naturally difficult to comprehend.
This is true for general data spaces and also for the network
torus when n>2. Our aim is therefore to obtain a mapping that
embeds the torus network into a lower-dimensional
representation that can be easily displayed and appreciated.
One such mapping is an arrangement in which the torus nodes
are ordered along a line. When such an operation is executed
on a graph, it is called a vertex numbering or indexing [16].

Our framework extends the technique of node ordering
from graphs to torus networks which poses some special
challenges. Since the torus network is symmetric, if we layout
the nodes along a line, the start and end nodes will break the
symmetry rule. A solution to the problem is to simply tie the
two ends of the line together and form the circle shown in

Figure 1a. As an added benefit, this also makes the
arrangement more compact and allows the links to be drawn in
the circle’s interior (see below).

An important metric for these types of numberings is
locality. Specifically for our application, we desire that nodes
that are close in the ordering are also close in the torus network.
But can we wish for the converse as well, that is, can we ensure
that nodes that are closely connected in the torus network are
also mapped to nearby locations in the optimal numbering? It
turns out that only the former can be fulfilled (see [16] and also
others). This is not surprising because such a numbering is
essentially a dimension reduction which is often a lossy
undertaking. A direct implication of this finding is that there
will be pairs of nodes that might be far apart in the ordering but
closely connected in the torus network.

The amount of locality that can be achieved depends on the
type of node ordering, or curve across the high-dimensional
domain. The locality can be quantified as follows. Suppose the
index curve is C, and d(*) is the distance function according to
the curve index. Then the locality L can be measured as:

 ∑ () ()

where [] () and smaller values for L

mean better locality. Essentially, we choose the k nodes nearest
to the indexed node and then calculate their connective
distances in the torus network. Typically, we set k=6. In
addition, we also assign different weights w according to the
index distance of these k points. As users pay more attention to
the nearest points and less to points further apart, their weight
of perceptual influence decreases. The weight function is
defined as follows and plotted in Figure 2.

C. Node Ordering via Sequential Torus Nework Traversal

The simplest curve for traversing the torus network is to go by
offset. In this ordering there is a jump from the last point of one
dimension to the first point of the next dimension. This means
that two points adjacent in the sequence index might be far
away in torus network space which breaks the locality. Using
equation (1) the locality of this sequence layout is 1,822, which
is relatively poor, as we will see shortly.

D. Node ordering via Traversal with Space Filling Curves

Superior locality can be achieved with curves that have a
fractal character, such as the Hilbert space-filling curve
[19][21]. A 2D Hilbert curve is shown in Figure 3. We can

4

 (a) (b)

Figure 4: Our two node ordering schemes compared: (a) sequential (b)

Hilbert curve. The color of a node shows the average torus-space distance

between it and its neighbors. The line charts in the center plot the CL
changes (gradients) between two neighbor points on the circle.

Figure 3: Hilbert curve in 2D

clearly see the self-similar (fractal) and hierarchical character
of the curve. There are 4 main quadrant blocks, each composed
into 4 similar blocks again, and so on.

To traverse a 5D torus network we require a 5-dimensional
Hilbert curve. Given 2

p
 nodes per dimension, p binary digits

are needed to encode it. The index along the Hilbert curve can
then be represented by an np-bit integer which can be
decomposed into n bits of p binary digits each.

Using equation (1) we compute the locality of the Hilbert
curve node ordering as 1414 – and improvement of 22.4% over
the sequential ordering. As mentioned, the locality metric does
not cover how many neighboring torus nodes may map to
distant locations from a focus node. This is better assessed with
the converse metric:

∑ ()

 (2)

Here, is the average distance of a node i and its direct

neighbor nodes. Figure 4 colors the nodes according to ,

both for the sequential curve and for the Hilbert curve (darker

reds denote higher CL). The difference is not overly drastic,

but we observe that the distribution around the circle seems

smoother for the Hilbert curve. The inserts in each circle

presents graphs that plot the local CL gradients and we

observe that the Hilbert curve’s CL transitions are indeed

smoother, while the sequential curve has several large spikes.

D. Adding the node interconnections to the network layout

Having laid out the nodes optimally, in order to visualize the

network traffic we need to show their direct interconnections.

The radial layout is perfectly suited to depict interconnections

of entities, as has been recognized also in other works in the

area of performance visualization [4]. Essentially, we draw a

line for each directly connected torus node. Figure 5 shows the

outcome for both types of curves we have studied – sequential

(a) and Hilbert (b). The visual clutter due to the massive

number of direct connections (2n) is obvious.
But before we address the visual clutter we make another

important observation. It appears that the sequential indexing
leads to much empty space in the center, essentially wrapping
around the circle’s annulus. The Hilbert curve, on the other
hand, makes better use of the circle interior. This may prove
advantageous when it comes to readability, although the
sequential scheme may be easier to understand conceptually.
Testing these two hypotheses, as well as others, will be part of
a set of user studies to be conducted in the future.

 (a) (b)

Figure 5: Showing the direct node interconnections by interior lines (blue): (a)
sequential curve indexing and (b) Hilbert curve indexing.

In order to reduce the visual clutter resulting from the
crossing of many straight lines, we apply the popular edge
bundling technique of Holten at al. [8]. It warps straight edges
that both originate and end in similar areas into splines and
bundles them together like cable trees. Edge bundling typically
greatly reduces visual clutter, but as we observe in Figure 6, it
has only little effect on the sequential curve layout (a) while it
provides much better readability for the Hilbert curve (b).

 (a) (b)

Figure 6: The effect of edge bundling: (a) sequential curve indexing and (b)

Hilbert curve indexing.

5

 (a) (b)

Figure 7: Visualizing the connections of a small group of (root) processors

with their directly connected neighborhoods: (a) the sequential indexing
scheme and (b) the Hilbert curve indexing scheme. For each panel, the

bottom figure shows the overall distribution and the top figure shows the

zoomed-in area around the root processors.

Figure 8: the parallel coordinate-based node selction interface

E. Contrasting the visual signatures of the ordering schemes

Zooming into a small neighborhood of nodes on the circular
layout gives insight into the visual signatures of the two
ordering techniques we studied. This is shown in Figure 7
where we examine the first connections of a set of 6 processors
for a 5D torus network. Here, Figure 7a shows the pattern of
the sequential curve indexing scheme and Figure 7b shows the
patterns of the Hilbert curve indexing scheme. In each figure,
the bottom shows the overall distribution and the top shows the
zoomed-in area around the root processors.

The sequential scheme clearly expresses the torus
coordinate distances in the indexing distances. In the zoom-in
we can see the communications within the primary coordinate
as two short bundles of lines going in the two opposite
directions, and we can also see the communications with
processors that vary in the 2

nd
 and 3

rd
 most significant

coordinate. These visualize as four line bundles reaching out a
bit further. The final two, least significant coordinates give rise
to the line bundles reaching far out.

The Hilbert curve scheme exhibits a rather different pattern.
The first observation we make is that the connections occur, at
least on average, on a more local level. There is only one line
bundle that goes to the opposite of the circle since these
processors happen to reside in a different hyper-cube at the top
level of the fractal hierarchy. The other bundles are due to
processors also residing in different hyper-cubes than the root
processors but at decreasing levels in the fractal hierarchy.

For the remainder of this paper we will focus on node
orderings generated with the Hilbert curve numbering scheme.
While is too early to pass judgment on which of the two
schemes (or even another) is more intuitive to domain users –
we would require a user study and real data for this – we
believe, at least for now, that the locality behavior of the
Hilbert scheme, and the fact that it makes better use of the
circle interior space, makes it the preferable method.

V. THE NODE SELECTION INTERFACE

A realistic torus network can have tens and even hundreds of
thousands of highly interconnected compute nodes. This will
amount to an extremely crowded network display, as has been
already demonstrated in Figure 6. In the presence of large data
and attributes, selection, filtering and brushing are effective
techniques to control the deluge. And so, we also require an
effective interface that allows analysts to focus on interesting
subsets of torus network processors for the purpose of studying
their communication patterns in the network display.

The coordinates of the processors constitute a familiar
organizational encoding for a large parallel computer such as
the torus network, and so it is meaningful to build a selection
interface around this organizational structure. With this in mind,
we have implemented a parallel coordinate interface [10]
which assigns each node coordinate (dimension) to one of the
parallel axes, in increasing order from left to right. Thus, a 5D
torus network gives rise to a parallel coordinate display with
five parallel axes. In this visualization, a specific processor is
expressed as a single polyline – a piecewise linear spline which
connects the processor’s coordinate positions (locations) on
each of the parallel axes.

The parallel coordinate visualization of the 5D torus
network is shown in Figure 8, plotting all processors and their
respective polylines. The careful reader will notice that in this
figure, the individual polylines appear slightly displaced and
form narrow bands. This occurs because we assigned to each
polyline a small random offset in each dimension. Had we not
done this, it would have been difficult to visually trace
individual polylines since they all would meet at a few discrete
positions along a coordinate axis, as implied by their discrete
integer coordinate values, such as 1, 2, 3, … The small offset
does not change the coordinate values significantly, and the
locations of the intersection points are still around the true
coordinate values, but the overlap is reduced and the density of
lines with a specific coordinate value can be easily discerned.

A. Node selection

We can now easily select a processor by simply clicking on a
polyline and see it and its communication links highlighted in
the network display, with the other links shown as background
to provide context. This is shown in Figure 9 where the red line
is the selected processor with coordinate (0, 1, 2, 2, 0). Vice

6

Figure 9: Selecting a node with the

parallel coordinate display: (a) the
selected processor highlighted as a red

polyline, (b) the coupled network

display with the selected node and its
direct communication inks highlighted

– the other torus links are shown in the

background for context.

(b)

(a)

Figure 10: Filtering and bracketing with
the node selector. (a) Only nodes with

specific values in the third and fifth

coordinates are selected (b) The
corresponding nodes in and their

communication links in the network

display.

(a)

(b)

Figure 11: Highlighting important links by higher opacity.

Figure 13: Tracking a single message across the network. The color tone of

the path indicates time – lighter means older and darker means more recent.

versa we can also pick a node or communication link in the
network display and see these processors highlighted in the
node selector.

B. Node filtering and bracketing

It can also often be useful to select a group of processors and
see their intercommunication patters. We did this in our earlier
example depicted in Figure 7. This can be achieved by filtering
and bracketing operations in the node selector’s parallel
coordinate interface. Figure 10 shows an example where we
selected processors with specific coordinate values in the 3

rd

and 5
th
 dimensions. Their links are then highlighted in the

associated node display.

There might be communication links that have more weight
than others. The weight could be due to many factors, such as
importance, number of messages in a certain time interval, or
the number of processors in the selected set using it (one or
two when only directly connected processors are considered –
more when also processors are considered that have used the
link in a wider-range path). A relatively straightforward way to
show this weight is by using different line strength or opacity.
Figure 11 presents an example.

VI. USE CASE – TRAFFIC VISUALIZATION

To show a first use case of our framework, we simulated a
simple network traffic scenario. In this simulation, we assume
that (1) all nodes can execute the code correctly and without
fail, and (2) the bandwidth of the channels is sufficient to allow
all messages to pass through without jam.

Pseudo code of our simulation algorithm is presented
Figure 12. The time generation is similar to a wake up – the
processor starts to become active and sends/receives messages.
We generate the wakeup time for a node i at random after
which it sends a message to one randomly selected neighbor.
All nodes are set to wake up before half of the full simulation
time T has expired (T=30 minutes). When node i sends a
message at time its neighbor receives it at , and sends
it to its randomly chosen neighbor who receives it at ,
and so on. The process continues until T has been reached.

Algorithm 1: Traffic Simulation Algorithm

1. Initialization
 For i=1:N

 For j=1:T

 Node[i][j]={time: i, msg:0 };
2. Wake up time generation:

 For i=1:N

 T[i]=(random()*N/2).floor();
3. Message generation:

 For i=1:N

 Node[i][T[i]].msg++;
 oC=i; //old choice

 nC=i; //new choice

 For i=T(i)+1:T
 nC=Node[oC].neighbor[(random()*2n).floor()];

 Node[nC][i].msg++;

 oC=nC;

Figure 12: Our network traffic simulation algorithm

A. Track a message across the network

We first use the network display to track a certain message
across a series of nodes. In Figure 13, the color tone of the path
indicates time – lighter mean older and darker is more recent.

7

Figure 14: Network traffic state at

various time slices. Heavier colored

edges mean more traffic. We can
observe the change in network

traffic over time, and we use the

node selection interface to focus on
a certain set of processors.

 (a) t = 5 (a) t = 10

 (c) t = 15 (d) t = 10 filtered with selection below

Figure 15: Our time slicer uses the ThemeRiver paradigm to visualize the
messages flow across a set of selected nodes. The black line at the bottom is

the time axis. The vertical pink line is a user-selected time slice. The labels
of the different layers are the node IDs. Upon moving the mouse overs a

specific layer, the system displays the node ID, current time and the number

of messages of the corresponding node.

 (a) (b)

Figure 16: Network traffic analysis. Upon selecting a time slice and a set of
processor nodes the network display can show (a) the set of nodes that are

involved in the messages (links colored blue) and (b) which one are not (links

colored green).

B. Visualize overall network traffic

Our next example visualizes overall network traffic. Figures
14a-c show three snapshots along time, each of a certain time
slice. In these visualizations, edges are only shown when there
exists a transmission and edge opacity is mapped to the number
of messages sent through the link within this time slice. We
can clearly see that as time goes on there are more messages in
the network (since more nodes have woken up). But we can
also observe that at t=10 (Figure 14b) the link pointed to with
red arrow seems rather busy, but is less busy at t-15 (Figure
14c). Finally, Figure 14d shows the network when only a
subset of processors are considered – those with a the second
coordinate set to 1 and fourth set to 2. We can clearly observe
that one particular links is much busier than the others which
can point to possible future link contentions.

C. Select and visualize network activity for a time slice

Next we show how our system allows analysts to examine a
certain time period, and optionally a specific processor or
processor group as specified with the node selector.Our system
uses ThemeRiver [7] to visualize the time-series data of the
nodes and/or links and empowers users to make comparisons
among them. ThemeRiver creates an axis-centered, stacked
stream graph of the set of time series data where the height of
an individual stream is proportional to the data value.

Figure 15 shows a ThemeRiver display for the number of
messages going through the nodes directly connected to the
root node marked in Figure 7. We have colored the layers of
ThemeRiver with different colors and have used the node index
to order them. We can make a number of interesting
observations. First, every node has periods in which it does not
receive or send a message. For example, node 260 for example
sends no message when t=1, 2, 16, 17, 19, 20, 21, 27 and 28. It
was waiting for the message at these time periods. Second, we
can also tell when a node has a high number of messages and
seems to be busy. For node 260, this occurs when t= 9, 28, etc.
Finally, we can also observe the overall message flow across
these nodes by gauging the entire width of the stream. Here we
observe that when t=12, the number of messages from all
nodes are smallest and when t=24, they are largest.

In our last example we utilize the time slicer to pick a
specific time slice (t=24), and we use the node selector to pick
a set of root nodes (those that were already used in the previous
example). The slice at t=24 (see Figure 15) is the busiest and so
analysts might be interested in seeing where the traffic comes
from. Upon these selections the network display shows the
(busy) links involved in these messages in blue (Figure 16a).

8

Since it is insightful to also see the links not involved in these
communications, our system provides the option to color these
(silent) links in green (Figure 16b).

VII. CONCLUSIONS

The main premise that guided our development of TorusVis
ND

was to give torus network performance analysts a framework
that can provide a single view onto the network, as opposed to
an array of projective views. We believe that such an approach
scales better with the increasing dimensionality and magnitude
of these networks, as they seek to grow performance,
bandwidth, and communication speed.

In our effort we made use of the concept of graph
numbering. We experimented with two such schemes –
sequential curve indexing and Hilbert curve indexing – and
studied them via a set of simple use cases, tasks, and scenarios.
We found that each method has advantages and disadvantages,
as pertaining to readability and locality. Exposing the system to
real network analysis and running it with real performance data
will probably bring more clarity to these issues.

Our framework follows one of the classic paradigms of
information visualization – overview, filter, and detail on
demand. Known as the “Visual Information Seeking Mantra”
[20] it puts forward a mindset where users are in the loop,
steering the data exploration process via operations like
selection, filtering, and brushing. We achieve these operations
via our node selector interface based on the method of parallel
coordinates and with our time slicer based on the ThemeRiver
paradigm. Both can be used for selection and filtering, but also
for the visualization of network performance.

Filtering and selection help users manage large and
complex data and configurations, and we hope to have
demonstrated that this has also great potential for torus network
performance analysis. Future work will aim to make our
interface more scalable. In particular we would like to
introduce multi-resolution capabilities into the network display
to allow it to handle larger numbers of network nodes, and we
would also like to introduce multi-perspective lenses to the
network display interior to allow users to zoom into multiple
areas of interest. Finally, we would like to work with domain
experts and real data to truly optimize our framework and
system.

ACKNOWLEDGMENTS

This research was partially supported by NSF grant IIS
1117132 and the MSIP (Ministry of Science, ICT and Future
Planning), Korea, under the "IT Consilience Creative Program
(ITCCP)" (NIPA-2013-H0203-13-1001) supervised by NIPA
(National IT Industry Promotion Agency).

REFERENCES

[1] J. Bjørnstad, 3D Visualisation of Network Topology, Routing, Path
Distribution and Network Data in Simulated InfiniBand Clusters.
Masters thesis. Department of Informatics. University of Oslo, 2011.

[2] A. Choudhury and P. Rosen, "Abstract visualization of runtime memory
behavior,” Proc, IEEE Workshop on Visualizing Software for
Understanding and Analysis, pp. 1-8, 2011.

[3] J. Choo, S. Bohn, H. Park. “Two-stage framework for visualization of
clustered high dimensional data,” Proc. IEEE VAST, pp. 67-74, 2009.

[4] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. Van Wijk, A.
Van Deursen. "Understanding execution traces using massive sequence
and circular bundle views." IEEE Program Comprehension, pp. 49-58.
2007.

[5] G. Draper, Y. Livnat, and R, Riesenfeld. "A survey of radial methods for
information visualization." IEEE Trans. on Visualization and Computer
Graphics, 15(5): 759-776, 2009.

[6] K. Gabriel, “The biplot graphic display of matrices with application to
principal component analysis,” Biometrika, 58(3): 453-467, 1997.

[7] S. Havre, E. Hetzler, L. Nowell: “ThemeRiver: Visualizing Theme
Changes over Time,” Proc. IEEE InfoVis, pp. 115-123, 2000.

[8] P. Hoffman, G. Grinstein, K. Marx, I. Grosse, E. Stanley, "DNA Visual
and Analytic Data Mining", IEEE Visualization, pp. 437-441, 1997.

[9] D. Holten, J. van Wijk, “Force-directed edge bundling for graph
visualization,” Computer Graphics Forum 28(3): 983-990, 2009.

[10] A. Inselberg, B. Dimsdale, “Parallel Coordinates: A Tool for Visualizing
Multi-Dimensional Geometry,” IEEE Visualization, pp. 361-378, 1990.

[11] K. Isaacs, A. Landge, T. Gamblin, P. Bremer, V. Pascucci, and B.
Hamann, "Exploring performance data with boxfish." IEEE High
Performance Computing, Networking, Storage and Analysis, pp. 1380-
1381. 2012.

[12] A. Landge, J. Levine, A. Bhatele, K. Isaacs, T. Gamblin, M. Schulz, S.
Langer, P. Bremer, V. Pascucci, “Visualizing network traffic to
understand the performance of massively parallel simulations,” IEEE
Trans. Visualization and Computwe Graphics, 18(12):2467-2476, 2012.

[13] K. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz, T.
Bremer, “State of the Art of Performance Visualization,” EuroVis 2014.

[14] J. Kruskal. M. Wish, Multidimensional Scaling Sage Publications, 1977.

[15] M. Meyer, A. Barr, H. Lee, M. Desbrun, “Generalized Barycentric
Coordinates on Irregular Polygons,” J. Graphics Tools, 7(1):13-22,
2002.

[16] G. Mitchison and R. Durbin. Optimal numberings of an NxN array.
SIAM Journal on Discrete and Algebraic Methods, 7(4):571–582, 1986.

[17] J. Nam, K. Mueller, "TripAdvisorN-D: A tourism-inspired high-
dimensional space exploration framework with overview and detail,"
IEEE Trans on Visualization and Computer Graphics, 19(2): 291-305,
2013.

[18] T. Nesson and S. Johnsson, “ROMM routing on mesh and torus
networks,” Proc. ACM Symp. on Parallel Algorithms and Architectures,
pp. 275-287, 1995.

[19] H. Sagan, Space-Filling Curves. New York: Springer-Verlag, 1004.

[20] B. Shneiderman, “The eyes have it: a task by data type taxonomy for
information visualizations,” IEEE Symposium on Visual Languages, pp.
336-343, 1996.

[21] D. Voorhies,”Space-filling curves and a measure of coherence,”
Graphics Gems II, pages, 26–30. Academic Press, 1991.

